Remark on the $p$-rank of torsion free abelian groups of infinite rank
نویسندگان
چکیده
منابع مشابه
THE CLASSIFICATION PROBLEM FOR p-LOCAL TORSION-FREE ABELIAN GROUPS OF FINITE RANK
Let n ≥ 3. We prove that if p 6= q are distinct primes, then the classification problems for p-local and q-local torsion-free abelian groups of rank n are incomparable with respect to Borel reducibility.
متن کاملCOUNTING DISTINCT FUZZY SUBGROUPS OF SOME RANK-3 ABELIAN GROUPS
In this paper we classify fuzzy subgroups of a rank-3 abelian group $G = mathbb{Z}_{p^n} + mathbb{Z}_p + mathbb{Z}_p$ for any fixed prime $p$ and any positive integer $n$, using a natural equivalence relation given in cite{mur:01}. We present and prove explicit polynomial formulae for the number of (i) subgroups, (ii) maximal chains of subgroups, (iii) distinct fuzzy subgroups, (iv) non-isomorp...
متن کاملOn the complexity of the classification problem for torsion-free abelian groups of finite rank
In 1937, Baer [5] introduced the notion of the type of an element in a torsion-free abelian group and showed that this notion provided a complete invariant for the classification problem for torsion-free abelian groups of rank 1. Since then, despite the efforts of such mathematicians as Kurosh [23] and Malcev [25], no satisfactory system of complete invariants has been found for the torsion-fre...
متن کاملFuzzy Subgroups of Rank Two Abelian p-Group
In this paper we enumerate fuzzy subgroups, up to a natural equivalence, of some finite abelian p-groups of rank two where p is any prime number. After obtaining the number of maximal chains of subgroups, we count fuzzy subgroups using inductive arguments. The number of such fuzzy subgroups forms a polynomial in p with pleasing combinatorial coefficients. By exploiting the order, we label the s...
متن کاملOn controllers of prime ideals in group algebras of torsion-free abelian groups of finite rank
Let RA be a group ring of an abelian group A and let I be an ideal of RA . We say that a subgroup B of A controls I if I = (I ∩ RB)RA. The intersection c(I) of all subgroups of A controlling I is said to be the controller of the ideal I ; c(I) is the minimal subgroup of A which controls the ideal I . The ideal I is said to be faithful if I = A ∩ (1 + I) = 1. In theorem 4 we consider some method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1963
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1963.100549